風力発電施設による鳥類への影響評価
—北海道におけるオジロワシの風車衝突事故の現状をふまえて—

白木 彩子
風力発電施設による鳥類への影響評価
—北海道におけるオジロワシの風車衝突事故の現状をふまえて—

白木 彩子

要旨
国内の風力発電施設による鳥類への悪影響の一例として、北海道で確認されたオジロワシの風車衝突事故30事例について分析した。事故は毎季に多く確認され、塩害に与える若い個体の死亡が高かった。死亡したオジロワシの少なくとも半数以上は北海道で繁殖する集団由来の個体であると考えられ、衝突事故による局所的な死亡率の増加はとくに地域集団に重大な影響を与える可能性がある。確認された事故は海岸から近い（1キロメートル以内）風車で多かったが、内陸の通りルート上にある丘陵地でも発生した。とくに狭い崖や海岸沿いの風車では事故が多いことから、オジロワシの生息する場所ではこのような立地への風車施設は回避されるべきである。また、鳥類への影響評価における今後の重要な課題のうち、BACI (before-after-control-impact) による評価及び、長期的調査、累積的影響評価について最近の研究事例を取り上げながら整理した。オジロワシの衝突事故防止対策に関する提案を行った。

はじめに
風力発電施設建設による鳥類への悪影響については、早くから風車の巨大化を推進してきたヨーロッパ各国において1980年代から報告されている（たとえば，Byrne, 1983; Winkelman, 1985など）。多くのヨーロッパ諸国においても風力発電は国家的な戦略として推進されており、陸上だけでなく洋上を含めた大規模施設も多いことから、鳥類の保全との間にはさまざまな軋轢が生じている。近年、これらの国々ではこの問題に関する大がかりな研究プロジェクトが手掛けられ、著明な国際科学雑誌に多数の研究成果が発表されていることからも社会的な関心の高まりと問題の深刻さが伺える。
また、風力発電と野生生物保全との問題の解決に向け、地域や国からの行政機関、自然保護団体、事業者、研究者、技術者らによる国際会議が開催され、国や立場を超えたプロジェクトも立ち上げられている。たとえばEUの2020年ターゲットである再生可能エネルギー割合30%の達成に向け、互いの知識や経験を分かち合い、より良いエネルギー利用を目指したGood Practice Wind projects（http://www.project-gpwind.eu/（2012年12月7日確認））では、風車建設による野生生物を含む環境への負荷低減を目指した提言や実践が紹介されている。
一方日本では、社会一般においても、鳥類や生態学を専門とする研究者においてもこの問題への関心が高まっている。組織的な研究もほとんどなされたがなかった。そのため、風力発電施設による鳥類への影響の現状については不明な点が多く、近年では風車への衝突事故に対する懸念が高まっている。これは、鳥類が飛行中に風車の羽根をタワービル、付帯施設などに衝突するものでとんどストライクともよばれる。日本で最初に確認された鳥類の風車衝突事故は、2001年4月に沖縄県の風力発電施設で発見されたシロガシラの事例である（古南，2008）。公表されているものとしては、2002年に長崎県内の施設で発見されたトビの事例（鴨川，2005）が最も古く、それ以降、オジロワシ、オオワシ、ミサゴ、イヌワシ、ハイタカなどの希少猛禽類を含む、さまざまな鳥類の衝突事故が全国各地で報告されている。
これらの全国的な事例の一覧は日本野鳥の会のホームページで見ることができる（日本における鳥類の風力発電設施への衝突事故死の発見事例）
オジロワシの風車衝突事故は日本で初めて確認されたのは2004年2月で、北海道北部日本海側の苦前町の風力発電施設で発生した（写真1）。その後も数度の施設で事故が発生し、一部には新聞誌上での報道がなされるなど、事業者が環境行政の対応が遅く、これまで具体的な事故防止対策は取られていなかった。

北海道の風力発電施設の多くは海岸付近にある。オジロワシは海岸や湖沼などを御場とし、これらの水域周辺の林内で営巣するため、風力発電施設の建設地と生息地との間で複数の事故が生じやすいと考えられる。


死体回収された野生のオジロワシの、最近10年間の死因のトップは風車への衝突事故で（観路地方環境事務所平成23年度野生生物保護対策検討会オジロワシ・オオワシ保護増殖分科会）（記者レク資料）、個体数の保全上無視できない問題である。一方、オジロワシの保護増殖事業内容には人為的な死亡率の低減に向けた事故防止対策が盛り込まれている（文部科学省ほか、2005）。それにもかかわらず、最初の事故の発生から10年近くも具体的な対策がとられないまま放置されている現状は問題である。

再生可能エネルギー利用への転換が急進に進められるようとしている中、北海道では今後、風力発電施設の大幅な増加が予測される。2012年12月現在、私の知るだけで北海道には10件以上の建設計画があり、ほとんどが海岸付近で計画されていることからオジロワシに対するさらなる影響が懸念される。2012年10月から風力発電事業における環境影響評価が法的、義務化されたが、その実施の困難を示す環境省の「鳥類等に関する風力発電施設設立地選定のための手引き」（以下、「立地選定のための手引き」）（環境省自然環境局野生生物課、2011）は、最終的な評価基準が事業者任せと取れる内容となっていることから、適切な影響評価や影響回避策が実施されるのかが危惧される。また、風力発電施設による鳥類や自然環境への影響には未知の部分が多いことから、この手引きは継続的に見直され、国内外における最終の取組みが試験研究の成果を柔軟に取り入れて、改訂される必要があるだろう。

この論説ではまず、国内で生じている風力発電施設による鳥類への悪影響の一例として、北海道で確認されたオジロワシの風車衝突事故の分析により、事故の特徴や事故の発生した風車の立地等の傾向について示した。次に、鳥類への悪影響を評価・回避するために重要と考えられる課題について近年の研究成果を紹介しながら整理した。

なお、本稿は保全生態学研究誌17号に公表された著者の総説（白木、2012）で使用した図表に新たなデータを追加・改変し、全体を書き改めたものの実際の風力発電施設建設計画において、予定施設が鳥類に与える影響やその評価について考えたための一資料となれば幸いである。

1 北海道におけるオジロワシの風車衝突事故の現状と特徴

1.1 北海道における鳥類の風車衝突事故の現状

表1は2012年8月までに北海道の風力発電施設で死骸が回収され、風車への衝突事故死と判断された鳥類種とそれらの確認件数についてまとめ
<table>
<thead>
<tr>
<th>分類群</th>
<th>種</th>
<th>件数</th>
</tr>
</thead>
<tbody>
<tr>
<td>オジロワン</td>
<td>Haliaeetus albicilla</td>
<td>30</td>
</tr>
<tr>
<td>オオワシ</td>
<td>H. pelagicus</td>
<td>1</td>
</tr>
<tr>
<td>ハシボソワシ</td>
<td>Corvus corone</td>
<td>1</td>
</tr>
<tr>
<td>カモ類 (カモ目カモ科)</td>
<td>Anas spp.</td>
<td>3</td>
</tr>
<tr>
<td>カモ類</td>
<td>(カモ目カモ科)</td>
<td></td>
</tr>
</tbody>
</table>
事故件数は少ないが、これはどのように考えるべきだろうか？

鳥類の衝突事故の発生状況を明らかにするため
に風車の周辺で行う死骸探索調査において、体サイズの小さい種の死骸は見落とされる可能性が高
い（Kerlinger et al., 2000）。また、地上の死骸が
消失する時間は死骸のサイズや季節によって異な
り、一般と大型の鳥類の死骸は比較的長く地上に
残り（Smallwood et al., 2010）、小型の鳥類では
消失速度が遅い（Kerlinger et al., 2000; Morrison,
2002; Smallwood, 2007）。何故かというと、地上に落下した死骸の多くはスカベンジャー
動物（キツネやカラスなどの死骸を食べる生物）
によって食べられたり遠方に持ち去られるが、
大型の鳥類の死骸は小型の鳥類に比べて全体が食
べ尽くされるのに時間があり、また重いのを持
ち去られにくいと考えられる。一方、夏季には小
型の種の死骸はより早く腐敗することも予想され
る。さらに、オジロワシやイマワシのような希少
猛禽類の死骸が発見された場合は環境省や地方自
治体などに報告される可能性が高いが、小鳥類の
死骸が偶然発見されても報告されにくいことが多い
と考えられる。つまり、死骸、スカベンジャー動物などに起因する死骸の消失速度、発見
時の報告されやすさなどの点から、小型鳥類種
では事故が発生しても発見または認知されない可能性がより高く、過小評価される傾向といえる。

また、死骸探索調査の有無や頻度、立地条件な
どにより、衝突事故にあった死骸の発見率は風力
発電施設によって異なると考えられる。たとえば、
絶対的な死骸調査が行われてきた苦楽地域の施設
や、道路沿いに風車があるなど死骸が見つかりや
すい立地条件にある施設では発見される可能性は
他の施設より高いといえる。

これらのことから、オジロワシの事故件数が他
種に比べて多いのは、実際に事故が多発している
ことに加え、上記のような条件が関係している可
能性もある。衝突事故の現状を正確に把握するこ
とは、衝突種や衝突頻度についてだけでなく事故
の発生しやすい立地条件を正しく理解するために
も重要である（白木, 2012）。そのために多くの
施設で同一の方法で死骸探索調査を行なことに加
え、発見された死骸数にさまざまな補正を加えて
（たとえば、調査者による発見率やスカベンジャー
動物による持ち去り率など）、できるだけ正しい衝
突件数を推定する必要がある。これまでに衝突件数
推定するための多くのモデル式が提唱されており
（たとえば Morrison, 2002; Smallwood, 2007 な
ど）、北海道では苦楽地域の施設を対象としたモデ
ル（Kitano and Shiraki, 2013）が提案されてい
る。

1.2 風車衝突事故で死亡したオジロワシの齢およ
び事故発生の時期

風車衝突事故で回収されたオジロワシの死骸の
うち齢が特定された24個体では、成鳥が3個体で
それ以外は当歳の幼鳥または亜成鳥（2～4歳）
だった（図1）。一般に、オジロワシの成鳥は衝突
しにくいのだろうか？

世界で最も大きなオジロワシの繁殖地が有する
ノルウェーでは、繁殖地であるスモーラ島に
風力発電施設が建設され、4年半の間に39個体の
オジロワシが風車に衝突死し、そのうち21個体は
成鳥であった（May et al., 2010）。したがって、
オジロワシでは成鳥が衝突しにくいとはいえ、
風力発電施設周辺の生息状況によって事故に遭い
やすい齢が異なることも考えられる。なお、
Nyggård et al. (2010) はスモーラ島の風力発電施
設内や周辺には多くの営巣地があり、施設建設後
に営巣地を放棄して消失し始めた事が多かったこ
とから、オジロワシの営巣地周辺における風車建
設は避けるべきとしている。

図2は北海道における風車衝突事故によるオジ
ロワシの死骸の月別発見件数および発見時の死骸
の状態等から推定された、事故発生から発見まで
の経過時間の頻度を示したものである。事故が最
多く確認されたのは1月と3月の各6件で、次
いで4月の5件、5月と12月の各4件が続き、
ただし、融雪が盛んな3月～5月では事故に遭っ
てから長期間経過した死骸の比率がやや高く、地
上に落下した後に降雪に埋もれた死骸が融雪で出
現した可能性が高いため、全体としてみると、11月か
ら5月までの、主として融雪期がオジロワシの衝
突事故の発生しやすい時期と考えられる。逆に、
ヒナの巣立ちから巣外育雛期にあたる7月から9月には事例が確認されていない。また、全体の半数以上にあたる16個体の死骸が当日または翌日、発見されている一方、約半数が発見されていると判断された死骸は7個体だった。白木（2012）は死骸の確認調査や風車の保守点検作業の頻度と、発見された死骸の多くが衝突事故から数日以内のものだったことから、発見された死骸は実際には起こった衝突事故の一部を示しているのに過ぎないことを指摘しており、より多くの未発見の事故が発生している可能性が示唆される。

越冬期の北海道には、週間北海道で生息するオジロウシの繁殖集団（留鳥）と、ロシア極東地域で繁殖（または超夏）し、冬鳥として渡来するオジロウシの両方が混在する。白木（2012）はオジロウシの衝突事故による死亡個体のうち、半数かそれ以上が北海道の繁殖集団に由来する個体である可能性が高いことを述べている。植田ほか（2010）は、越冬期のオジロウシでは渡り個体よりも留鳥を含む滞留個体の方が、風車の羽根の回転範囲の高さを飛翔する確率が高いことを示し、GPS発信器を着用したイヌワシの調査においても同様な結果が得られている（Katzner et al., 2012）。さらにイヌワシでは、移動中の換羽個体よりも風力発電施設周辺に生息する地域集団の個体の方が頻繁に方向転換を行い、風車間を飛行する頻度が高いことも示されている。これらのことから、オジロウシの留鳥と渡り鳥では風車に衝突する率が異なる可能性があり、北海道で繁殖する集団のオジロウシの方が渡り個体よりも衝突しやすいかもしれません。北海道で繁殖するオジロウシはロシア極東地域からの渡り個体とは伝達的に異なる可能性もあることから、風車衝突事故の発生に対する局所的な死亡個体の増加は地域集団に対してより深刻な影響を与えると考えられる（白木，2012）。

一方、北海道でオジロウシとともに越冬するオオワシの個体数はオジロウシよりもかなり多いが（オオワシ・オジロウシ同調査グループ，1996）、確認されたオオワシの風車衝突事故は今のところ一例だけである。この理由としても、留鳥でないオジロウシと全て渡り個体であるオオワシと飛行行動の差が考えられるが、両者の生息分布の違いなどが関与している可能性もある。

1.3 衝突事故の確認された施設の分布と立地特性
オジロウシの風車衝突事故が確認された施設の分布と事故の確認件数を図3に示した。7つの施設に8件の事例が確認されている。最も多くの事例が確認されたのは、石狩川地区の施設であるが、その他の施設も事例が確認されている。 }

![図3 オジロウシの風車衝突事故が確認された施設の分布と確認件数](image)
設でそれぞれ1〜13件の事故が確認されている。前述したように、確認された事故情報にはさまざまな条件に由来する偏りがあると考えられるため、施設や地域間の発生件数について単純に比較することはできない。しかし、事故が確認された施設について分析することで、事故の発生に関わる何らかの特徴や要因を考察することは可能である。

苦前町にある二つの施設では、それぞれ最も多く13件と次に多い6件の事故が確認されている。13件の事故が発生したのは風車3基の施設で（総出力2,200kW）で、施設の規模が小さくても多くの衝突事故が発生する可能性があることがわかる。

6件の事故が確認されたのは風車20基の施設であるが、衝突したと考えられる風車（死体発見地点から最近接のもの）は施設内の一部の場所に集中する傾向があり、立地条件が影響している可能性を考えられる。これらに次いで事故確認数が多かったのは、北海道では最大数となる57基の風車を有する樺内市宗谷町にある施設である。この施設はオオワシやオジロワシを含む多くの鳥類にとって北海道とサハリンを結ぶ、渡りルートの出入り口にあたる丘陵地一帯にある。

次に、北海道内にある個々の風車の立地条件と衝突頻度との対応関係を検討した。図4は北海道にある風車264基について海岸から風車までの距離を算出し、オジロワシの衝突事故確認数との関係を示したものである。衝突事故が確認された最も内陸の風車は海岸から約2km地点にあったので、図4では海岸から3km以内にある風車のみについて示した。事故の確認された風車の多くは海岸から1km以内にあり、とくに500m程度までの範囲に集中した。また、複数回の事故が確認されているのは500m以内にある風車であったことから、衝突事故は海岸部で多いことが裏付けられた。ただし、1km以上内陸にある風車2基でも事故が発生しており、これらは渡りルートにあたる丘陵地の尾根上にあった。

また、海岸からの距離と風車の立地する地形のタイプを組み合わせて5つの立地地形に区分し、30回の衝突事故列挙のうちオジロワシが1回でも衝突した風車18基と、白木（2012）の図5によると40ヶ所の風力発電施設（合計250基の風車を含む）のそれぞれの立地地形区分の頻度の比率を図5に示した。このうち40ヶ所の風力発電施設の立地区分の比率は、北海道にある風車がおおよそどのような立地条件にあるかを示すために用いた。立地地形区分は、海岸から500m以内にある平坦地（海岸平坦地：A）、海岸部から500mよりも離れた平坦地（内陸平坦地：B）、海岸から500m以内にある海蝕崖や海岸段丘面または丘陵地（海蝕崖・海岸段丘面：C）、海岸から500mよりも離れた海岸段丘面や丘陵地（内陸丘陵地：D）および洋上（E）とした。なお、海岸から500m以内に1基以上の風車を含む施設は海岸部（AまたはC）にある施設とした。

図5より海蝕崖上や海岸段丘面上（C）にある風車と内陸丘陵地（D）にある風車で事故確認数が多くあったが、40ヶ所の施設の立地地形の比率との比較から、これらの立地上にある風車で事故が多いのは北海道の風車がこのような地形に集中しているためではないと考えられる。海岸部の崖上や

図4 北海道内264基の風力発電風車の海岸からの距離とオジロワシの衝突事故の確認件数
海岸から3km以内にある風車のみについて示した。
斜面上（C）にある風車では事故の発生が最も多くなかった。一般に、海岸部の斜面では海側から斜面に上昇風が吹き、オロシハシはこの風を利用して海岸線の斜面に沿い飛行しながら捕えることも多い。Cのような地形と風の条件の条件が、衝突事故を引き起こす一つの要因となっている可能性がある（白木，2012）。Katzner等人（2012）はオロシハシにGPS発信器を装着して飛行行動の調査を行い、斜面上昇風の吹く急傾斜の崖上や斜面上では、渡り喙を持つ鳥類も上昇気流が生じる平坦地や緩やかな斜面上に比べて低く飛ぶことを明らかにし、尾根上又は急斜面付近の風車建設には注意が必要であると述べている。越冬期には北海道のほぼ全域の海岸線でオロシハシが飛行する可能性があることから、海鳥等上や海岸部の段丘上への風車鉄塔に注意が必要である。また、これまでに確認された事故事例から、海岸から近い（1km以内）場所や、内陸であっても強い所からの舉動のある風車ではオロシハシが衝突する可能性が高いことが示された。このような立地における風車鉄塔については、オロシハシの生態状況や飛行経路を正確に把握するための事前調査と慎重な検討が必要である。一方、事故が発生したすべての風車が特定されているわけではないため、他の立地条件下でも事故が発生している可能性がある。発生した事故をできる限り発見し、把握するための体制を整えること、事故データの分析を継続して計画段階における立地選択に反映させること、そして事故の発生した風車に対し後述するような事故防止対策を実施することが、今後の早急な課題である。

2. 風力発電施設建設における鳥類への影響評価に関する課題

以下では、風力発電施設建設による鳥類個体群へのインパクトを評価するために重要と考えられる項目のうち、「立地選定のための手引き」における記載のない、あるいは記載が不十分と考えられたものを取りあげた。現行の環境影響評価制度下での個々の事業者による実施は難しいと思われる内容も含まれるが、鳥類個体群の保全上、非常に重要な課題と考えられており、関連省庁の事業者、研究者、地方自治体などが協力して具体的な対応策を講じることが望まれる。

2.1 風車衝突事故以外の影響評価とBACI

鳥類の生息地に悪影響を引き起こす要因には、風車や架設施設の建設に伴う生息環境の悪化や消失だけでなく、工事中や稼働期間中に至る作業や車両の乗り入れ、風車からの騒音や振動なども含まれる（Drewitt and Langston，2006）。一方、「立地選定のための手引き」では、風力発電施設建設による鳥類への悪影響のうち、ほぼ風車衝突事故の予測評価についてのみを扱っている。そして、施設建設に伴う生息環境の悪化による影響については、これまでのような一般的な開発事業における影響評価の事例を踏まえて実施することで、比較的簡潔な高い評価が期待できるとしている。また、オロシハシの，クマタカ、オオタカ等の希少鳥種については、「猛禽類保護の進め方（改訂版）」（環境省自然環境局野生生物課，2012）に準拠して調査を進めることとされている。しかし、後述のように、衝突事故以外の要因が鳥類個体群に重大な
影響を与える場合も想定され、低周波や振動など風力発電事業に特化した生物評価への悪影響が存在する可能性もある。そもそも「猛禽類保護の進める方」にはオジロワシに関する記載がない。調査・評価の根拠に乏しいことから、実際も実験事故以外の影響評価については懸念は大きい。

なお、風力発電施設が鳥類に与える衝突事故以外の悪影響についてはDrewitt and Langston（2006、日本野鳥の会訳）や白木（2007）による解説があるので詳細はこれらを参照していただきたいが、以下に風力発電施設建設による環境変化や被災による鳥類個体群への悪影響を示した海外の事例を紹介する。

まず、鳥類が棲 ngh後の風車を遮断することを明らかにした事例として、オーストラリア各地の風力発電施設周辺に繁殖している鳥類群集を調べたPearce-Higgins et al.（2009）は、猛禽類や涉禽類、スズメ目の鳥類7種において風車付近での生息数が減少したことを示した。研究で10年以上が経過した施設でもこのような傾向が確認されたことから、風力発電施設による生態環境への影響は長期間にわたり、種々の個体群に大きな影響を与える可能性があるとも示唆された。一方、Garvin et al.（2011）は風力発電施設設置地において建設前後の猛禽類の生息数を調査し、建設1年後では猛禽類の毎年数が47%減少したことを報告した。そして、この減少は風車に衝突して死亡したためではなく、風車施設によって生息地が放棄されたことによるものと述べている。とくに、この調査地に生息していたハイロワシはこれまで風車に衝突しにくい種と言われてきたが、この研究の結果から、風車の設置された生息地を放棄するために衝突しない可能性が考えられた。

工事作業の悪影響について明らかにした報告もある。風車建設前、工事中、建設後のそれぞれにおいて、繁殖期の鳥類の生息数について調べたPearce-Higgins et al.（2012）は、工事中に生息地を放棄し、風車稼働後も戻ってこない鳥がいたことを明らかにした。著者らは建設工事による野生生物への影響にも十分な注意が必要であり、その影響の回避策もとるべきべき策を主張している。たとえば、鳥類の繁殖期を避けて工程を行うこと、繁殖場所付近への立ち入りや工事を制限すること、撲滅される範囲を制限するために工事現場周辺に障壁やスクリーンとなるものを建設することなどが提案されている。

また、近年では建設前と風力発電稼働後に建設予定地で調査を行ったことから、建設予定地と近接する風車のない類似環境を対照地として同様な調査を行い、影響を客観的に評価する手法（BACI：before-after-control-impact）が推奨されている。鳥類の生息密度や繁殖状況には年変動があることからも、建設の前後で検出されたそれぞれの変化が風車建設の影響かどうかを判断するためにはこのような調査が必要である。日本ではBACIによって風力発電施設建設の影響を評価した報告は今のところ発表されていないが、影響を正しく検出すために、今後はこの調査手法を取り入れることが望ましい。

2.2 長期調査に基づく影響評価
現行の環境影響評価において現地調査に用いられる期間は、一般に数年程度である。しかし、このような短期間の調査では個体群や生物種へのインパクトを正しく評価することは難しいことを、いくつかの研究が実証的に示している。

世界の19ヶ所の大規模風力発電施設において調査された、鳥類個体数の随年変化のデータを解析したStewart et al.（2007）は、これらの施設で行われた影響評価では調査期間が短いために個体群へのインパクトが事前に評価されていないことを示し、影響評価には長期間の調査が必要であると述べている。エジプトのハガワシを対象として長期にわたる広域的な現地調査を行った研究では、風車への衝突事故によるハガワシの死亡率の上昇はごく僅かな値であったものの、長期的にみると個体群の絶滅確率を増大させることを明らかにされた（Carrete et al., 2009）。そして著者らは、長寿の猛禽類個体群における風力発電施設による影響、短期間の調査から推定した衝突事故のみに基づくのではなく、個体群への長時間のインパクトを解析して評価することがより重要であることを強調している。

また、Dahl et al.（2012）はオジロワシの営巣するノルウェーのスモーラ島において実施された風力発電施設建設前後の13年間の継続調査により、施設周辺におけるオジロワシの繁殖成功率が低下することを明らかにした。この要因としては、繁殖個体が風車に衝突したことだけでなく、生息環境の悪化や拡乱によってつくがいが営巣地を放棄し、いなくなったことが挙げられている。繁殖成功率は個体群の動数を決める主要なパラメータのひとつであるが、その算出に評価には少なくとも建設の前後にそれぞれ数年間以上の調査が必要である。

これらの研究事例が示すように、風力発電施設が鳥類個体群に与えるインパクトは、長期的な継続調査がなければ明らかにできないことが多い。
2.3 複数施設による累積的影響の評価

現行の影響評価においては、個々の事業において発生する影響のみしか考慮されない。しかし、鳥類の渡りルート上に次々と持ち受ける風車による衝突のリスクや生息環境の変化は、個別の事業で評価されるよりもさらに深刻な状況を鳥類にもたらすだろう。渡りしない鳥類であっても、生活場に季節的な移動や出生地からの分散に伴う移動を含む種は多い。これらの種では、生活史のさまざまなステージで異なる風力発電施設による悪影響を被る可能性がある。風力発電施設が障接して存在する場合には、定着性の強い種の繁殖につながっても複数の施設の影響を受けることもない。また、風車発電施設によって好適な生息地を追い出された個体は近隣に代替の生息地を求められるであろうが、前ほど好条件の場所ではないかもしれませんし、そのような生息適地にさらに風車が建設されなければ、もはや生息地がなくなる可能性もある。

鳥類個体群へのインパクトを評価するためには、個々の施設が与える影響だけでなく、個々の施設群に関与するすべての施設による累積的な影響を考慮する必要がある（Masden et al., 2010 ほか）。さらに、複数の施設や人間行動による複合的な影響は、単純に個々の影響を足し合わせたものより大きくなる場合があることが指摘されており（Canter and Kamath, 2005）、その評価は大変難しい（MacDonald, 2000）。このような複数施設による累積的影響は「立地適正化のための手引き」では触れられていが、鳥類を含むさまざまな生物種に非常に大きなインパクトを与える可能性がある。北海道の海岸沿いに連なる複数の風力発電施設や、一地域に隣接するいくつかの施設の建設が計画されている状況をふまえ、このような累積的な影響の評価を誰が、どのように実施するのかが早急に検討され、影響が防止されなければ鳥類の保全は達成できない。さらに、広域的に生息する種や渡り鳥などの個体群においては累積的な影響の評価は国レベルで、あるいは国際的に実施される必要がある。

2.4 オジロワシにおける風車衝突事故の防止対策

「立地適正化のための手引き」では、風車施設において鳥類の衝突事故をゼロにするという目標はあり得ず、科学的データに裏付けられた許容される衝突リスクに基づいて施設の可否を判断する方針を示している。しかし、現在ではそれぞれの鳥類の衝突リスク値が明らかではないことからそれぞれの施設ごとに保全目標を立て、いわゆる順応的な管理を行うことを推奨している。有識者の意見を取り入れるなどの文脈はあるものの、設置の可否に関する最終的な判断は事業者に委ねられている。また、この手続きでは、影響評価において除後を除く衝突事故の可能性が残された場合、鳥類の風車衝突事故を低減するための措置として飛翔方向を妨げる風車の配置、視認性を高める風車ブレードの彩色、猛禽類の制動物を誘引しない植生や環境管理等を挙げているほか、一時的に飛翔密度が高くなり衝突が懸念されるような場合には飛翔状況をリアルタイムで監視し、風車を弾力的に管理・運用するような対応が想定されている。

鳥類種の多くは個体群の情報が十分ではない上、個体群に対する衝突事故以外の影響や累積的な影響などを考慮する必要があることからも、精度の高い「許容される衝突リスク値」の算出は難しい。また、個々の事業ごとにこの目標値を設定するという指針は多数の施設による累積的影響が考慮されず、種によっては重大な悪影響をもたらしかねるものである。さらに、オジロワシのような長寿の亜種では稀な死亡率の上昇が個体群の動向に大きく影響し、絶滅リスクを増大させる可能性がある（たとえば Carrete et al., 2009；Dahl et al., 2012）。これらのことから、風車設置の可否判断においてオジロワシなどの希少猛禽類や脆弱な地域個体群などの評価の対象となる場合には、より予防的な方向で判断される必要があり、衝突の可能性のある場合には風車は建設しないことを原則とすべきだ。影響評価において風車衝突事故の発生の可能性に不確実性がある場合には建設を回避するか、実現的に効果が期待できる衝突事故回避措置のもとで設置されるべきである。「立地適正化のための手引き」で挙げられている措置のうち、風車の弾力的な運用管理は猛禽類を対象とした事例の成功率が報告されており、汎用性もあると考えられる。これには手引きで述べられているリアルタイムでの監視による方法のほか、一時的な稼働停止措置なども含まれる。

たとえば、スペインの風力発電施設では、希少猛禽類であるヨロエリハゲワシの衝突事故数が最大となる渡りの時期に選択的に風車の稼働を止めることで、年間電力生産量の低下を非常に低く抑えながら衝突死をゼロ化することに成功している（de Lucas et al., 2012）。この調査では、全風車の周辺を365日、日の出から日の入りまで監視し
て事故のモニタリング調査を行うとともに、敷地内に集団飛行が見られた場合や個体の飛翔行動から衝突の危険性が考えられた場合には、携帯電話で稼働停止を要請するシステムが取り入れられている。衝突事故防止策として大きな効果が確認された事例ではあるが、かなりの人手労力が費やされた。また、多数のイヌワシが衝突事故で死亡しているカルフォルニアのアルカモントパスの施設では、衝突事故の多い風車の季節的な稼働停止や移設、衝突しやすい風車タイプの変更などの措置が試みられている（Smallwood and Spiegel, 2005；Alameda County SRC, 2010）。なお、この事例は「立地適正化のための手引き」第5章の資料(16)にも記載されている。

日本でも弾力的な運用管理が試行されている風力発電施設がある。2つのIBAサイト（鹿島重要生息地）の間に関設された福井県あわら市立南風発電所は、サイト間を往復する天然記念物マガツとヒシクイの飛行経路上にあることから、建設前から衝突の危険性が懸念されてきた。2011年の運用開始後、日本野鳥の会の職員が中心となって風車の一時的な稼働停止を前提としたガゼットの観察が、10月から6月の朝・夕の飛行時間帯に実施された（あわら風力発電事業に風車保全監視マニュアル、福井県あわら市における風力発電事業の保全に関する検討委員会事務局（http://www.wbsj.org/nature/log/other/tyunouko/shiryo101004_02.pdf）（2012年12月7日確認））。

一方、「立地適正化のための手引き」では建設前の調査による影響評価には予測の不確実性が考えられることから、事後調査を行ってその結果に基づいた保全措置をとる順応的管理を推奨している。しかし、事後調査によって悪影響が明らかになった場合の対応としては、「事後調査の結果、必要に応じて有識者を踏まえた保全措置を実施するといった旨を評価書に記述すべき」といった記載があるだけで、現実的に有効な保全措置が速やかに取れるかどうかは疑わしい。また、既に稼働中の風力発電施設において生じた衝突事故への対応については言及されておらず、今後の方針も不明である。

少なくとも、現状の個体数や生息環境が十分ではないために国レベルでの保護事業が展開されている環境省保護生物事業対象種においては、人類的な死亡要因が問題を除くべきではない。これらの種の事故が発生した風車については、衝突の原因や周辺の鳥類の生息状況や飛翔行動などが推察され、再発の可能性がある風車には弾力的な運用管理や衝突事故の可能性のない場合への移設を含めた、現実的に有効な事故防止策が適用されるべきだ。たとえばオジロウシでは、これまでの事故発生状況を踏まえ、事故が発生する可能性のある風車については11月から5月の日中に周辺の飛翔行動を監視することや、リアルタイムでの監視が不可能ならばこの時期の日中の稼働を停止することで、衝突事故の発生をかなり低減されるだろう。あるいは、風力発電施設内やその周辺における飛行ルートや環境利用を明らかにし、衝突の可能性の低い場所に風車を移設する方法もある。しかし、衝突事故の発生した風車に対してもこれらの事故防止対策をとるとしても、衝突事故の発生をいかに正確に把握するのかがやはり重要な課題となる。これは事業者の協力なくしては解決不可能であり、関係者間での十分な協議や合意形成が求められる。

おわりに

オジロウシの衝突事故が繰り返し発生している風車が放置されている現状は、風力発電事業者に対し「建設してしまえば、稼働後に稀少種が衝突死しても大きな問題はないと」といった認識を助長しているように思われ、今後の環境影響評価の取り組み方に影響が生じることが懸念される。

北海道のオジロウシの繁殖個体群はこれまでさまざまな開発事業との折衝を重ねながら、近年、個体数を回復し始めている。個体の死亡や予測困難な複合的影響など、従来の開発事業とは異なる重大なインパクトを鳥類個体群に与える可能性のある風力発電施設建設には、とりわけ慎重な影響評価が求められる。

引用文献

d= "オジロワシ保護増殖事業計画" (2012年 12月 8日確認)

オジロワシ・オジロワシ同調調査グループ (1996) 北海道本州北部におけるオジロワシとオジロワシの越冬数の変動. 日本野鳥の会 (編) 平成7年度環境庁委託先野生動植物種生息状況調査, 1-9, 日本野鳥の会.
白木彩子 (2007) 風力発電施設と鳥類の保全. 北海道の
自然,45,56-60.
白木彩子 (2012) 北海道におけるオジロワン
(Haliaeetus albicilla) の風力発電用風車への衝突事故の現状,保全生態学研究,17 (1), 97-106

「北海道の自然」への投稿の案内

本誌「北海道の自然」は、北海道（関連して日本・地球も含む）における自然およびその保護・保全に関わる解説・意見・提言・考察・紹介など、および自然の保護と破壊の実態報告などを掲載するとともに、会員および非会員の皆さんのお意見・ご相談・ご支援など、北海道の自然およびその保護に関わる情報を発信・交流の場となることを目的に『北海道の自然』投稿規定より）としています。上記の目的に従う投稿を歓迎いたします。

「北海道の自然」の論説は通常「特集論説」と「一般論説」からなっております。後者のテーマは限定しておりませんので、広い分野からの投稿をお願いいたします。また、身の回りの自然に関わる解説・エッセイあるいは自然探訪（旅行）記などでも歓迎いたします。

投稿いただける方は8月末日までに下記の協会事務所までお知らせください。投稿規定および執筆要項をお送りいたします。原稿編集は10月末日です。

投稿・問い合わせ・発行所
一般社団法人 北海道自然保護協会
〒060-0003 札幌市中央区北3条西11丁目 加藤ビル5階（6階）
電話：011-251-5465 ファックス：011-251-5465
メール：ncbhokkai@polka.ocn.ne.jp

一般社団法人 北海道自然保護協会会誌「北海道の自然」投稿規定（抜粋）

1. 投稿資格
 投稿は会員および非会員とする。ただし、非会員の場合は編集委員会の判断による。

2. 投稿原稿
 (1) 投稿原稿の種類は、「論説」、「報告・解説」、「読者の声」、「書評・紹介」などとした、すべて和文とする。
 *論説：北海道内外の自然および自然保護・保全に関する報告・分析・指摘・考察などの論文および記事。
 *報告・解説：本協会に関わる企画行事などの報告など。
 *読者の声：会員および読者からの自然および自然保護・保全に関する報告・意見・感想など。
 *書評・紹介：自然および自然保護・保全に関連する図書についての批評・紹介など。
 (2) 以上の原稿内容に関する責任は発行所にある。
 (3) 編集委員会は投稿原稿の内容が本誌の目的に合わないときは掲載を拒否することがある。

3. 原稿の長さ
 原稿の長さ（図表・写真を含む）は以下のとおりとする。ただし、編集委員会の判断により、下記制限を超える場合もある。なお、刷り上がり1ページは約2,000字である。
 *論説：刷り上がり8ページ以内
 *報告・解説：刷り上がり3ページ以内
 *読者の声および書評・紹介：刷り上がり1ページ以内

4. 原稿のまとめ方
 原稿は別紙の執筆要領にしたがって、簡潔にわかりやすく書く。
(以下省略)