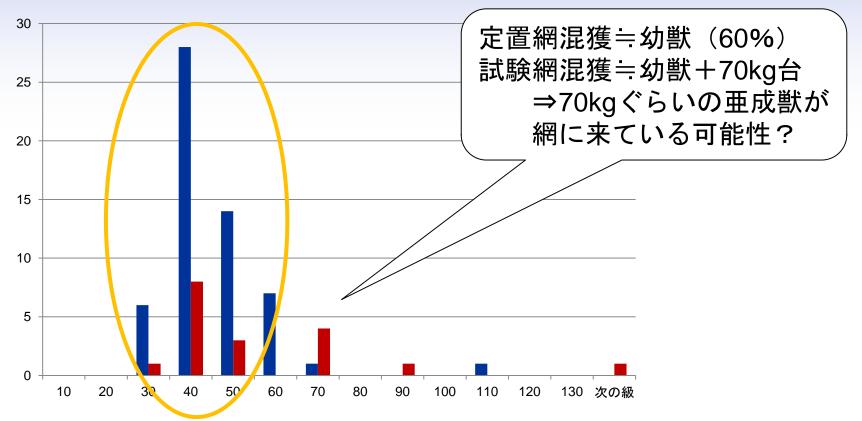
# 科学委員会第2回目 2014年環境省事業中間報告


www.themegallery.com

#### **Contents**

- 1 定置網および試験網における混獲個体
- 2 発信機個体からの今後の解析
- 3 ヘリセンサスによる見落とし率
- 4 ヘリセンサスによる体長推定

## 試験網および定置網による混獲個体

- 試験網回収混獲個体 18個体(うち3個体/4個体に発信機装着)
- > 定置網回収混獲個体 62個体(うち11個体に発信機装着)
  - ⇒丸岬33個体、丸米4個体

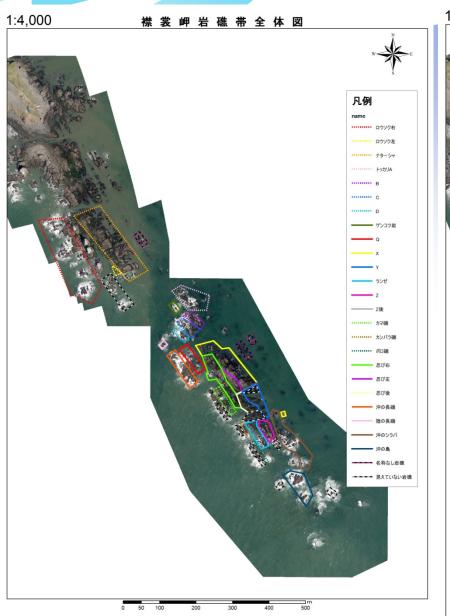


## 発信機装着個体

2014年度は、13個体に衛星発信機(GPS - Argos&潜水深度)+音波発信機装着 6月捕獲4個体+定置網捕獲9個体(残りは、推進費で三谷さんらが5個体に装着)

|          |    |            |            | 11 3 3113 32 |       |     |       |       |        | 1111-527 |         |
|----------|----|------------|------------|--------------|-------|-----|-------|-------|--------|----------|---------|
| 成長<br>段階 | 雌雄 | 個体番号       | 個体名        | 発信機<br>番号    | 8月    |     | 9月    | 10    | )月     | 1        | 月       |
|          |    | EZ140628-2 | 悟空         | 130589       | 6月28日 |     |       |       |        | 11/8ま    | で(再捕獲)  |
|          | 3  | EZ140628-6 | 悟天         | 135438       | 6月28日 |     |       |       |        |          |         |
| 公力出生     |    | EZ140825-1 | 大ちゃん       | 135411       | 8月    | 25日 |       |       | 10/9まっ | C        |         |
|          |    | EZ140628-1 | ブゥ         | 135437       | 6月28日 |     | 9/2まで |       |        |          |         |
| 幼獣       | 9  | EZ140628-5 | どれみ        | 135440       | 6月28日 |     |       |       |        |          | 11/11まで |
|          |    | EZ140822-2 | みっちゃ<br>ん  | 135439       | 8月22日 |     |       |       |        |          |         |
|          |    | EZ140906-2 | にしこり       | 141289       |       |     | 9月6日  |       |        |          |         |
|          |    | EZ141104-1 | しずか<br>ちゃん | 141294       |       |     |       |       |        | 11月4日    |         |
|          | ð  | EZ140906-3 | ごえさん       | 135442       |       |     | 9月6日  |       |        |          |         |
|          |    | EZ141008-1 | 逸ノ城        | 141292       |       |     |       |       | 10月8日  |          |         |
| 亜成獣      |    | EZ140910-1 | ジャン<br>キー  | 141290       |       |     | 9月    | 10日   |        |          |         |
|          | \$ | EZ140924-1 | たぬき        | 141291       |       |     |       | 9月24日 |        |          |         |
|          |    | EZ141009-1 | 園ちゃん       | 141293       |       |     |       |       | 10月9日  |          |         |

### 発信機装着個体から・・・


- ► <u>混獲個体の再捕獲割合</u>
  - ★個体数情報 2011年~2014年:捕獲90個体 (特に、最近、混獲個体の再捕獲の割合が多い)
- - **★上陸情報**⇒雌雄·成長段階別上陸頻度
  - ★<u>定置網以外</u>および<u>時期以外</u>の行動解析 (上陸・潜水行動)
- <u> 音波発信機 (2012年~2014年76個体)</u> から
  - ★定置網への依存性

20ヶ統の定置網の陸・沖網に受信機設置 ⇒いつ、どこの定置に、どれぐらい依存?

### ヘリセンサス実施要領

- >8月14日 有人ヘリコプター
  - ⇒換毛期の個体数把握
  - ⇒岬以外の上陸場の探索
- ▶ <u>8月31日</u> 無人ヘリコプター1回目(70m)
  - ⇒赤外線カメラの有用性
- ▶ 10月9日 無人ヘリコプター2回目(40m)
  - ⇒体長推定可能な写真撮影
    - (可視・赤外線カメラ両方で合成)
- ▶ 11月9日 無人ヘリコプター3回目(50m)
  - ⇒体長推定可能な写真撮影(可視のみ合成)

## 有人ヘリコプターによる見落とし率





## 有人ヘリコプターによる見落とし率

●見落し率≒沖の岩礁へ行くほど大? B ≼ C ≒ D

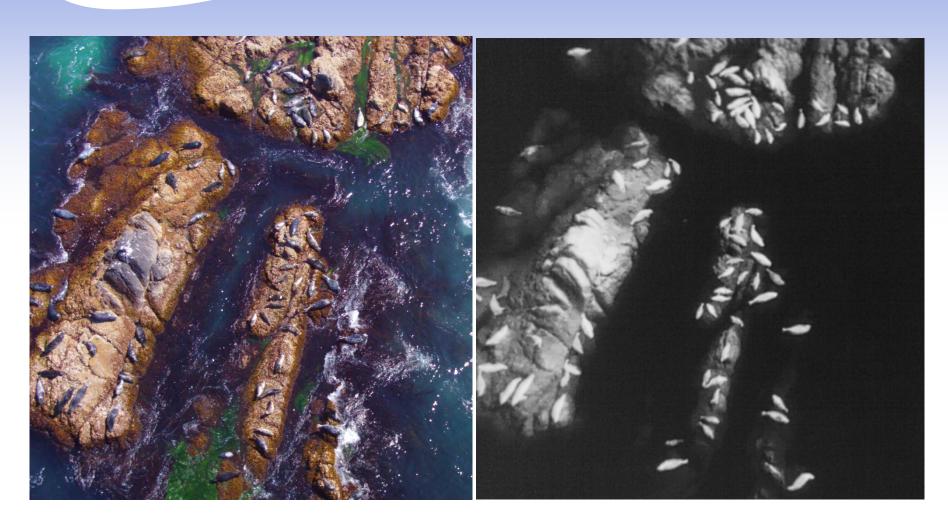
但し、見落し率は、上陸個体数とも関連あり

⇒ C岩礁 · D岩礁 2013年VS 2014年

⇒個体数が極端に少ないと見落し率の変動大(2013年B岩礁、2014年A岩礁)

●大きさ「Small」の割合≒2013年<2014年

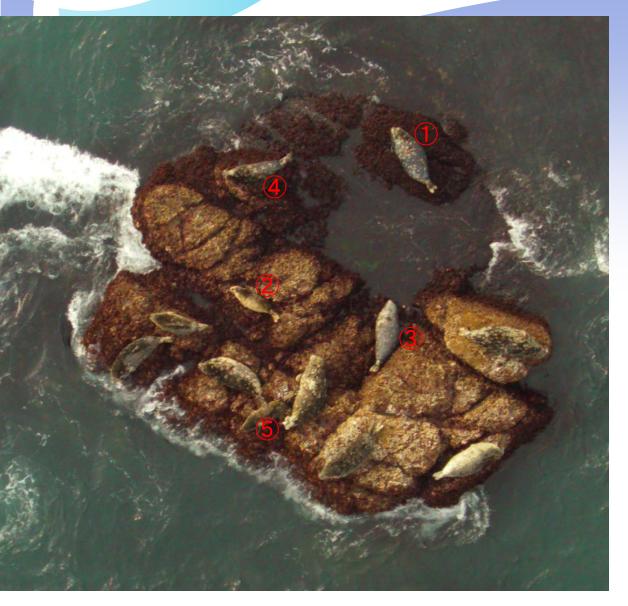
ヘリセンサス時期に依存:2013年10月VS2014年8月


|      |       | 陸上  | ヘリ  |       | 「Small」 | ГВig」 | 「その他」  |
|------|-------|-----|-----|-------|---------|-------|--------|
| 岩礁区分 | 年度    | 個体数 | 個体数 | 見落し率  | 割合      | 割合    | 割合     |
| ^    | 2013年 | 0   | 0   | _     | _       | _     | _      |
| Α    | 2014年 | 2   | 4   | 50.00 | 0.00    | 0.00  | 100.00 |
| В    | 2013年 | 17  | 21  | 19.05 | 0.00    | 0.00  | 100.00 |
| Ь    | 2014年 | 89  | 92  | 2.73  | 9.68    | 20.43 | 69.89  |
| С    | 2013年 | 172 | 212 | 18.87 | 6.96    | 17.83 | 75.22  |
|      | 2014年 | 232 | 322 | 28.11 | 19.51   | 15.85 | 64.63  |
| D    | 2013年 | 183 | 249 | 26.51 | 6.06    | 19.48 | 74.46  |
| D    | 2014年 | 44  | 54  | 18.69 | 7.55    | 13.21 | 79.25  |
|      | 2013年 | 372 | 482 | 22.82 | 6.22    | 17.84 | 75.93  |
|      | 2014年 | 366 | 471 | 22.29 | 16.11   | 16.32 | 67.57  |

#### 見落とし率

- ➤ 2013年(22.82) 2014年(22.29) ともに、 全体の見落し率はほぼ同じ
  - ⇒ほぼ同数が同じ上陸場を利用していたことに起因。
- ▶見落し率の補正
  - ⇒UAVの結果や上陸岩礁ごとで検討する必要。
  - ⇒陸上から2人の独立センサスも実施。
    - ★岩礁ごとのワッペン個体の見落し
    - ★ヘリセンサス+陸上から2人の独立センサス 見落しの少ない岩礁、多い岩礁を検討

## UAV赤外線カメラの有用性


> 赤外線カメラの有用性(特に流氷上や冬場)



## UAVによる体長組成解析

- ➤ UAVカメラ (可視および赤外線) は、真上から撮影
- ➤ UAVカメラの画像はGPS情報を持つ
  - ⇒全長計測が可能では?
  - ★重なりの多い写真を撮影することで tiff画像を合成(この画像にはGPS情報あり)。
  - ★今後、ワッペン個体で誤差を測定。
  - ★また、今後死亡個体で、 体長+最大横幅と体重の 関係を調べることで、体 重推定も可能?

## UAVによる体長測定の実際例



- (1) 1.436m
- 2 1.080m
- ③ 1.395m
- 4 1.258m
- (5) 1.181m
- ⇒何度か測定 しても小数点 第一位まで同

# Thank You!

www.themegallery.com